"The Biotechnology Challenge"

December 10-11, 2002, Workshop Carnegie Endowment for International Peace Washington, DC

The Next Generation of Pharmaceuticals (in the context of bioterrorism & the hostility of Nature)

bob.erwin@lsbc.com

Policy and Practice Must Address Dilemmas, & Truths

- Medicine advances despite ignorance
- Diseases advance despite medicine
- All biotechnology is "dual use"
- Monkey wrenches are simple tools
- Death is easier than life

Technology Is Advancing to Identify, Select and Exploit Therapeutic Targets

- Functional biology & Microarrays
- Image informatics
- Genome-wide pathway analysis
- Microchemical systems & Nanotechnology

Medical Advances, Mathematics, Biology (Paradigm A)

- High throughput screening
- Observation & analysis
- Experimentation
- Testing & development

Medical Advances, Mathematics, Biology (Paradigm B)

- Theory
- Modeling and simulation
- Experimentation
- Testing & development

Many Sophisticated Approaches to New Small Molecule Drugs

The Situation Today

- New drug development costs are increasing rapidly
- Timeframes to new product introduction are not decreasing - even though technology is faster & cheaper

The Situation Today

- Most pharmaceuticals do not work for a large percentage of patients who try them.
- "Personalization" of medicine will improve efficacy and reduce side effects.
- Integration of technology to personalize therapy is under-funded and in early phases of development.

Where Are We & Where Are We Going? Dilemmas & Opportunties

- Medicine improves despite ignorance (but)
 Diseases evolve despite medicine
- Knowledge & technology move fast (but)
 - Practical applications develop slowly the "five more years" phenomenon

Why So Slow?

- "Investigator-initiated, hypothesisdriven" grant proposals are part of the problem
- Pharma industry market analysts & "blockbuster" mentality are part of the problem
- Risk is not politically correct (at least not when it can be described in sound bites)

New Drugs: Timeframe to Success Within Conventional Paradigms

NCE's: "blockbuster" mentality – good enough to sell 5+ more years!

NCE's: best technology – highly targeted, efficacious & safe → 10+ more years!

The Most Urgent Dilemmas

- All biotechnology is "dual use"
- Monkey wrenches are simple tools
- Death is easier than life

For Example. . . Bioinformatics for the Terrorist A Short Overview

- Hardware/software requirements
- Information management system (IMS)
- Publicly available viral genomes
- Discovery layer on IMS

Hardware/Software Requirements

- Database server (\$25,000)
 - Quad Xeon processor with 2 Mbytes cache, 8 GBytes memory, 1 terabyte hard drive disk
 - Runs web server and relational database
- Cluster of computers (\$50,000)
 - 30 node (each nodes consists of 2.4 GHz processor, 2 GBytes ECC RAM, 36 GBytes SCSI hard drive storage) Linux cluster
 - Gigabit switching network for cluster (\$5,000)
 - Runs bioinformatics algorithms
- Operating system and utilities (\$00)
 - Linux OS and GNU utilities (open source)

Information Management System

- Software development time to create base bioinformatics system (3 – 6 months 1 FTE)
- System requirements
 - Run all publicly available bioinformatics algorithms
 - House all public sequence information
 - Genbank (such as sequence info for virus genomes)
 - Swissprot (high quality protein data)
 - InterPro (performs sophisticated protein domain and functional searches)
 - Prosite (protein/pathway information)

Publicly Available Viral Genomes

- Genbank (NCBI) has 1376 viral genomes that provides sequence data and related information for the community.
- Included in the Genbank virus set is:
 - Cowpox.
 - Camelpox.
 - Sheeppox.
 - Swinepox.
 - Monkeypox.
 - Goatpox.
 - Fowlpox.... And many more!

Discovery Layer on IMS

- Compare all viral genomes via sequence homology
 - Example: compare cowpox genome to sheeppox genome (less than 5 minutes)

Enter public data

View results

Mining the Data

One Bottom Line: It doesn't take a national lab. . .

- Hardware (\$75,000.00)
- Operating System/Utilities (\$00.00)
- Time to create IMS (1 FTE for 3-6 months)
- Once hardware/software system is complete it is possible to compare all viral genomes in several hours.

How Real is the Technology/Threat? Rational & Lethal Virus Engineering

- Genome & Sequence Analysis is Easy, Ubiquitous & Cheap
- Sequence shuffling & directed modification no longer require fragmentation & reassembly
- Martyr hosts obviate need for complex laboratory culture conditions
- Drug/chemical countermeasures are not very good today (influenza, hepatitis, rhinovirus?)

Creating New Pathogens Is Easier Than Developing New Drugs

But, What If We Don't Have Time for Conventional NCE Development?

But, What If We Don't Have Time for Conventional NCE Development?

Immuno-pharmaceuticals

The best solution in the 3 month to 3 year timeframe

- Passive: antibodies (engineered)
- Active: subunit vaccines for both therapy and prevention

Why Immunopharmaceuticals?

- We can get help from the pathogen
- HTS by the mammalian immune system beats synthetic approaches by logs
- Immunotherapy provides the best speed & flexibility today

Are Fast Immunopharmaceuticals Realistic?

- Rapid virus detection and analysis
- Bioinformatics-based prediction
- Experimental determination
- Rapid antibody & antigen gene cloning & expression
- Rapid subunit vaccine & antibody manufacturing is feasible

How Fast is Fast (Novel Virus)?

- Virus ID from Serum 1-2 d
- Antigen ID (bioinformatic)
 1 d
- Ag/Ab Gene Cloning
 2 d
- Protein Expression (plant virus) 1-7 d
- Prep for Treatment of Patient 4-14 d

Diagnosis to Treatment:

9-26 days

Not Fantasy: Phase I/II Human Study Complete Vaccine to Treat non-Hodgkin's Lymphoma Made in Plants

Advantages of Plant Viral Vectors

Proteins are produced in Eukaryotic cells.

- Cytosolic replication cycle with viral reprogramming of host cell;
- No genetic modification of the host plant; Not transmitted by seed, pollen, fungi, or insects;
- Post translational protein modifications (disulfide bonds, glycosylation, etc).

High expression levels

- Rapid testing of recombinant clones: Days to prepare clones; inoculation to harvest in 10-14 days;
- Expression levels of 20-1000 mg/Kg fresh weight;
- Adaptable to rapid scale up;
- Economies of scale through agriculture-based bioreactor.

Proteins of immunopharmaceutical interest produced in plants via virus vectors

Tobacco Mosaic Virus Vectors

Antibodies

HIV-1 peptides

Idiotypic single chain vaccines

FMD virus VP1

Birch major antigen bet v1

Latex allergen

Rabies virus GP3 peptide

Plum Pox Virus

VP60 Rabbit hemorrhagic disease virus, RHDV

Potato Virus X

Single chain antibodies

WIN3, Cry 1 Ac toxins

Antimicrobial defensins

Virus CP Fusions of Immunopharmaceutical Use

Tobacco Mosaic Virus CP fusions

Influenza virus hemaglutinin epitopes

Malaria parasite peptides

Murine zona pellucida ZP3 peptide

Murine hepatitis virus peptide

Hepatitis C virus peptide

HIV-I peptide

Plum Pox Virus CP fusions

Canine parvovirus VP2 peptide

Potato Virus X CP fusions

HIV-I gp41 peptide

Staph. aureus fibronectin binding protein

Cowpea Mosaic Virus CP fusions

Human rhinovirus 14 capsid protein peptide

Mink enteritis virus VP2 epitope

Foot & mouth disease virus VP1 epitope

Cost of Delivery: An Important Factor in the Effectiveness of New Medicine

- Cost of R&D
- Cost to the patient / government
- Prevention vs. Treatment
- Cost of lost time!

Rapid & Cost-Effective Manufacturing:

antibodies, cytokines, vaccines

Existing GMP Facility Processes 3 tons/hr

What Next?

- Predict and Monitor
- Innovate & Apply on Parallel Tracks
- Expect Difficult Solutions
- Take an Active & Thoughtful, not Passive Approach to Risk
- The Problem is Permanent!

"The Biotechnology Challenge"

December 10-11, 2002, Workshop Carnegie Endowment for International Peace Washington, DC

The Next Generation of Pharmaceuticals

(in the context of bioterrorism & the hostility of Nature)

Thank You

